Tfb5 interacts with Tfb2 and facilitates nucleotide excision repair in yeast
نویسندگان
چکیده
TFIIH is indispensable for nucleotide excision repair (NER) and RNA polymerase II transcription. Its tenth subunit was recently discovered in yeast as Tfb5. Unlike other TFIIH subunits, Tfb5 is not essential for cell survival. We have analyzed the role of Tfb5 in NER. NER was deficient in the tfb5 deletion mutant cell extracts, and was specifically complemented by purified Tfb5 protein. In contrast to the extreme ultraviolet (UV) sensitivity of rad14 mutant cells that lack any NER activity, tfb5 deletion mutant cells were moderately sensitive to UV radiation, resembling that of the tfb1-101 mutant cells in which TFIIH activity is compromised but not eliminated. Thus, Tfb5 protein directly participates in NER and is an accessory NER protein that stimulates the repair to the proficient level. Lacking a DNA binding activity, Tfb5 was found to interact with the core TFIIH subunit Tfb2, but not with other NER proteins. The Tfb5-Tfb2 interaction was correlated with the cellular NER function of Tfb5, supporting the functional importance of this interaction. Our results led to a model in which Tfb5 acts as an architectural stabilizer conferring structural rigidity to the core TFIIH such that the complex is maintained in its functional architecture.
منابع مشابه
Electron Crystal Structure of the Transcription Factor and DNA Repair Complex, Core TFIIH
Core TFIIH from yeast, made up of five subunits required both for RNA polymerase II transcription and nucleotide excision DNA repair, formed 2D crystals on charged lipid layers. Diffraction from electron micrographs of the crystals in negative stain extended to about 13 angstrom resolution, and 3D reconstruction revealed several discrete densities whose volumes corresponded well with those of i...
متن کاملCloning and characterization of p52, the fifth subunit of the core of the transcription/DNA repair factor TFIIH.
TFIIH is a multiprotein factor involved in transcription and DNA repair and is implicated in DNA repair/transcription deficiency disorders such as xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Eight out of the nine genes encoding the subunits forming TFIIH have already been cloned. We report here the identification, cDNA cloning and gene structure of the 52 kDa polypeptide a...
متن کاملMms19 protein functions in nucleotide excision repair by sustaining an adequate cellular concentration of the TFIIH component Rad3.
Nucleotide excision repair (NER) is a major cellular defense mechanism against DNA damage. We have investigated the role of Mms19 in NER in the yeast Saccharomyces cerevisiae. NER was deficient in the mms19 deletion mutant cell extracts, which was complemented by the NER/transcription factor TFIIH, but not by purified Mms19 protein. In mms19 mutant cells, protein levels of the core TFIIH compon...
متن کاملDrosophila MUS312 interacts with the nucleotide excision repair endonuclease MEI-9 to generate meiotic crossovers.
MEI-9 is the Drosophila homolog of the human structure-specific DNA endonuclease XPF. Like XPF, MEI-9 functions in nucleotide excision repair and interstrand crosslink repair. MEI-9 is also required to generate meiotic crossovers, in a function thought to be associated with resolution of Holliday junction intermediates. We report here the identification of MUS312, a protein that physically inte...
متن کاملThe 19S complex of the proteasome regulates nucleotide excision repair in yeast.
Previous studies suggest that the amino-terminal ubiquitin-like (ubl) domain of Rad23 protein can recruit the proteasome for a stimulatory role during nucleotide excision repair in the yeast Saccharomyces cerevisiae. In this report, we show that the 19S regulatory complex of the yeast proteasome can affect nucleotide excision repair independently of Rad23 protein. Strains with mutations in 19S ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2007